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Introduction
Xylella fastidiosa is the bacterial agent of a number of xylem-
limited diseases, which affect many crop, ornamental and native 
plant species. It is found throughout the warmer parts of North 
and South America and is most well known for causing Pierce’s 
disease (PD) of grapevine and citrus variegated chlorosis (CVC). 
The bacterium is spread from infected native and cultivated plant 
species by xylem-feeding insects, most notably by leafhoppers 
(Homoptera:Cicdellidae) and spittlebugs (Homopter:Cercopidae). 
The sharpshooter group of leafhoppers are the most common vectors 
of X. fastidiosa in the United States. While the insect is feeding in 
host plant xylem, the bacterium is inoculated into the vessels. If 
the host plant is susceptible, the bacterium reproduces rapidly and 
moves both with and against the transpirational stream to colonize 
the xylem. It also is able to move laterally through xylem vessel pores 
in some manner that is not yet understood. Disease results when 
the vessels are occluded by bacterial growth and from induced 
gums and tyloses associated with PD infection (Fry and Milholland 
1990; Hopkins et al. 1974). The symptoms appear related to water 
stress (Goodwin et al. 1988a; Goodwin et al. 1988b) with marginal 
leaf-burn, leaf blade defoliation (‘matchsticks’) and uneven bark 
maturation leading to ‘green islands’ on developing canes (Stevenson 
et al. 2005). Fruit clusters typically raisin, and are left un-harvested, 
and vine death occurs as the disease spreads downward into the 
trunk, usually within a few years (Hopkins and Purcell 2002). 
A complete listing of literature related to PD can be found at the 
following website (http://www.cnr.berkeley.edu/xylella/refs/). 

Vectors
Purcell (1989) reviewed the insect vectors of X. fastidiosa. One of the 
earliest studies was by Hewitt et al. (1945) who examined 45 species 
of leafhoppers and found four species capable of vectoring PD 
including the green sharpshooter (Draeculacephala minerva Ball), 
the red-headed sharpshooter (Carneocephala fulgida Nott), and the 
blue-green sharpshooter (Graphocephala atropunctata Signoret). 
This study also found an association with alfalfa dwarf, now known 
to be caused by X. fastidiosa, when they observed PD affected vines 
in close proximity to alfalfa fields and disease symptoms and vectors 
on both crops. Mircetich et al. (1976) found that the red-headed 
sharpshooter could transmit X. fastidiosa from infected almond 
trees to healthy trees and to Carignane grapevines.

Freitag (1951) noted that the green sharpshooter, the red-
headed sharpshooter, and the blue-green sharpshooter were able to 
vector X. fastidiosa to a wide range of plant species including johnson 
grass, bermuda grass, rye grass, timothy, canna, toyon, scotch broom, 
hubam clover, alsike clover, crimson clover, red clover, ladino 
clover, and species of Artmenisia, Coprosoma, Godetia, Hedera, 
Lonicera, Oenothera, Sambucus, and Symphoricarpos. Hopkins and 
Mollenhauer (1974b) used enzyme-linked immunosorbent assay 
(ELISA), fluorescence microscopy, and direct culturing to test 

for X. fastidiosa in Florida and found the bacterium in American 
elder, Virginia creeper, peppervine, American beautyberry, and 
blackberry. Raju et al. (1983) used ELISA to detect X. fastidiosa 
in wild strawberry, miner’s lettuce, Himalayan blackberry, and 
periwinkle. Buzombo et al. (2006) tested 96 native and ornamental 
plants surrounding a Texas vineyard and detected X. fastidiosa in 
Yaupon holly, Vitis mustangensis (a resistant species), American 
sycamore, southern dewberry, frogfruit, Japanese honeysuckle and 
crape myrtle. In addition to previously known grape, almond and 
oleander reservoirs, Costa et al. (2004) detected X. fastidiosa in 
Spanish broom and Brassica species surrounding a Temecula (near 
San Diego, California) vineyard. Almond, Spanish broom and wild 
mustard isolates of X. fastidiosa clustered with strains known to be 
pathogenic to grape implicating them as PD hosts. Interestingly, 
these investigators did not find strains of X. fastidiosa virulent to 
grapevine in nearby citrus orchards; even though citrus is a favored 
feeding host of known PD vectors. Eucalyptus species have been 
found to be excellent hosts of the glassy-winged sharpshooter, but to 
date they have not been found to be hosts of X. fastidiosa (Costa et 
al. 2004). Given this evidence it is clear that the host ranges of both 
the vectors of PD and X. fastidiosa are very large and cross many 
plant families. 

Pierce’s disease
Pierce’s disease was first discovered in southern California near 
where Disneyland now resides and where Newton B. Pierce (1892) 
described it as Anaheim Disease. Pierce was brought to California 
to study this epidemic, which quickly wiped out tens of thousands 
of acres of vineyard and was partly responsible for the movement 
of viticulture to the northern part of the State. The causal agent 
was thought to be a virus until 1973, when it was described as 
a rickettsia-like bacterium (Goheen et al. 1973, Hopkins and 
Mollenhauer 1973). It has since been described as a gram-negative 
bacteria related to Xanthomonas, but belonging a new genus and 
species Xylella fastidiosa (Wells et al. 1987). Strains of X. fastidiosa 
infect a wide range of cultivated plants. In Brazil, citrus variegated 
chlorosis (CVC) has caused millions of dollars in loses for the citrus 
industry (Chang et al. 1993). Coffee leaf scorch is also caused by 
X. fastidiosa and has been detected in Brazil and, more recently, 
in Costa Rica (Rodriguez et al. 2001). Other important examples 
include mulberry leaf scorch, almond leaf scorch (Davis et al. 1980), 
alfalfa dwarf (Goheen et al. 1973), and phony peach disease (Davis 
et al. 1981).

This tremendous diversity of susceptible native and cultivated 
host plants (Cooksey 2004) inspired research designed to evaluate 
genetic diversity and cross-virulence among different strains of the 
bacteria. Hendson et al. (2001) tested 46 strains isolated from seven 
different host species and found that isolates from grape formed 
a genetically similar group. Chen et al. (2002) suggested that the 
CVC and PD strains of X. fastidiosa diverged recently because the 
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bacterium is native to the Americas and citrus was introduced from 
Asia. Although the CVC strains are genetically distinct from PD 
strains, the citrus strains have caused symptoms in grapes (Li et 
al. 2002). Strains of X. fastidiosa have not been compared among 
native grape hosts, but variation would be expected to be minimal 
compared to that across cultivated crop hosts or native plant hosts. 
Cross inoculation studies with strains from the genetically divergent 
V. vinifera and Muscadinia rotundifolia have successful infected both 
hosts (Hopkins 1984).

Pierce’s disease is widely spread and severely impacts viticulture 
in the southeastern portion of the United States where V. vinifera 
cultivars are most successfully grown in screenhouses to prevent 
vectoring of X. fastidiosa by sharpshooter insects. Pierce’s disease is 
also found across warmer regions of the western United States where 
its incidence is more sporadic and disease outbreaks are episodic and 
somehow related to the proper timing of environmental conditions 
(most often high rainfall to encourage native vegetation), vector 
population increases, and the expansion of bacterial populations in 
native host plants. There have been notable outbreaks of PD that 
have caused extensive damage in Texas and Arizona (Kamas et al. 
2000, Buzoumbo et al. 2006), and most dramatically in California. 
The last large outbreak in California occurred in the late 1990s 
and destroyed thousands of acres in the Temecula Region, near 
San Diego, California, and it coincided with a large increase in 
PD incidence in Napa and Sonoma County vineyards in northern 
California, which also caused millions of dollars in damage. This 
California outbreak led to a State and Federal program, which 
coordinates control and research efforts on Pierce’s disease (http://
www.cdfa.ca.gov/pdcp/). 

The glassy-winged sharpshooter introduction and 
spread
The outbreak of PD in Temecula was linked to the introduction of a 
new vector, the glassy-winged sharpshooter (Homalodisca coagulata) 
that was originally found in the citrus orchards and ornamental plant 
nurseries of southern California (Blua et al. 1999) after introduction 
from the southeastern United States or northeastern Mexico (Hoddle 
2004). The glassy-winged sharpshooter did not spread X. fastidiosa or 
cause appreciable damage from feeding in citrus or nursery plantings 
and built to very high levels in citrus where the term ‘sharpshooter 
rain’ was coined to describe their abundant extraction and excretion 
of xylem sap while feeding (http://ceventura.ucdavis.edu/IPM/
The_GWSS_A_serious_new_PD_vector_for_California_
Vineyards.htm). This sharpshooter spread in citrus orchards and 
multiplied in orchards adjacent to Temecula vineyards. The native 
plants of this high desert region do not support much X. fastidiosa, 
but eventually the glassy-winged sharpshooters found a source of 
X. fastidiosa and began spreading it into vineyards. 

This insect has many characteristics that make it a more 
robust vector of PD (Blua and Morgan 2003). The glassy-winged 
sharpshooter can vector PD from vine to vine and feeds both 
on succulent shoot tips and mature woody canes. The native 
sharpshooter vectors only feed on succulent shoot tips, which 
limits the season during which they can spread PD, and they rarely 
spread PD from vine to vine, instead spreading it from native hosts 
into vineyards. Thus, the glassy-winged sharpshooter spreads PD 
much more effectively and results in exponential increases of dying 
vines (Perring et al. 2001). Although PD caused major losses in the 
Temecula Valley in the late 1990s, the real threat created by the 
introduction and spread of the glassy-winged sharpshooter lies to 
the north, in the Central Valley with its extensive wine, table and 
raisin grape vineyards, and in the premium vineyards of the North 

Coast counties. While the spread of the glassy-winged sharpshooter 
has been slower than expected (due to intensive insecticide 
applications and the release of predatory wasps), there was a glassy-
winged sharpshooter related PD outbreak in Kern County in 2000 
(Hopkins and Purcell 2002) indicating that the insect can expand 
its range in California. 

Since its discovery in southern California citrus orchards, the 
glassy-winged sharpshooter has moved north into the Central Valley 
counties of Kern and Tulare, and smaller populations are established 
in Fresno, Santa Clara, Solano and Sacramento County (Hopkins 
and Purcell 2002). These populations present a large threat to the 
premium winegrowing counties of Santa Barbara, Santa Cruz, Napa, 
Sonoma and Mendocino where native sharpshooters currently vec-
tor PD. If the glassy-winged sharpshooter reaches these counties, 
PD will likely be spread much more widely and beyond what are 
localized ‘hot spots’.

Climatic effects on PD
Pierce’s disease pressure has historically been most severe in the 
southeastern United States. This is likely due a combination of high 
vector populations and a much longer growing season (Hopkins 
and Purcell 2002). The longer growing season also allows more time 
for X. fastidiosa populations to build up in vines which increases 
the chance of vine to vine transmission, and allows more time for 
X. fastidiosa to spread more thoroughly into host vines so that 
there is less chance that all of the infected tissue is removed with 
pruning. Winter temperatures in colder areas limit PD by severely 
impacting bacterial survival (Purcell 1980). Temperatures of 12°C 
and below negatively impact X. fastidiosa colony growth in vitro, 
and chilling host plants to 5°C can reduce bacterial concentrations 
in live tissue (Feil and Purcell 2001). Thus, PD is limited by cold 
winter temperatures that kill X. fastidiosa colonies residing in 
canes and trunks. This phenomenon is well-known and used in 
the southeastern United States where PD susceptible peaches and 
grapevines can be cultivated on colder hill tops, but not in warmer 
valleys. In California, PD is very rare north of southern Mendocino 
County, yet the vectors and host plants are found north through 
Oregon and Washington.

Climatic modeling, CLIMEX, has been used to predict where 
the glassy-winged sharpshooter could spread (Hoddle 2004). It 
predicted that this insect could survive in northern California, 
but not Oregon or Washington. This model was also used to verify 
that suitable conditions for the glassy-winged sharpshooter and 
X. fastidiosa exist in many of the areas where V. vinifera grapes are 
grown. It predicted that cold winter temperatures would prevent 
PD from establishing in much of France, Italy and northern and 
central Spain. However, it also predicted that X. fastidiosa would not 
survive in the Balkans, yet it has been detected in Kosovo (Berisha 
et al. 1998).

Control – limiting the vector
Efforts to eradicate the glassy-winged sharpshooter have utilized a 
range of conventional insecticides including pyrethroids, carbamates, 
organophosphates and neonicotinoids (Redak and Bethke 2003a, 
Redak and Bethke 2003b). The most effective of these, the systemic 
neonicotinoid imidacloprid is now the insecticide of choice and has 
demonstrated excellent control (Stone-Smith et al. 2005, Toscano 
and Byrne 2005, Toscano and Gispert 2005). Byrne and Toscano 
(2006) recommend imidacloprid application in early June when the 
glassy-winged sharpshooter is most likely to move into vineyards 
from nearby citrus groves or ornamental plantings. 

Redak and Bethke (2003a) tested a range of low-impact or 
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United States such as Muscadinia rotundifolia (including ssp. 
popenoii and munsoniana) and V. cinerea forms persisted for many 
years. Selections of V. arizonica, native to the southwestern United 
States and northern Mexico where there is strong PD pressure, also 
appear resistant (Krivanek and Walker 2005, Krivanek et al. 2005, 
2006,et al. Riaz et al. 2008). Species from PD-free areas such as the 
northeastern United States (V. labrusca) or Eurasia (V. vinifera) die 
quickly.

Different cultivars of V. vinifera are reported to vary in their 
susceptibility to PD, however all eventually succumb to the disease. 
Raju and Goheen (1981) inoculated 25 V. vinifera cultivars and 
ranked their susceptibility based on ELISA quantified X. fastidiosa 
levels. They stated that Colombard and Chardonnay were among the 
most susceptible and that Chenin blanc and Silvaner were the least 
affected. However, none of these cultivars survives after inoculation 
under vineyard conditions. Varieties do succumb over varying time 
lengths of time, but the planting of ‘less’ susceptible V. vinifera 
varieties has not proven to be a viable control strategy. Scattered 
vines in an affected vineyard may also survive for long periods of 
time, but once they are effectively fed upon and inoculated they also 
succumb.

The use of genetic engineering to produce PD resistant cultivars is 
limited by the availability of genes and the limited public acceptance 
of this approach to plant improvement. However, several efforts 
have been attempted. Aguero et al. (2005) transformed susceptible 
V. vinifera cultivars with a polygalacturonase-inhibiting protein 
from pear (pPGIP) with the intent of limiting X. fastidiosa’s cell-
wall degrading capability. Pierce’s disease expression was delayed and 
reduced with lower bacterial levels in transformed grapevines and 
pPGIP was found in untransformed scions grafted on to transgenic 
rootstock. This effect was promising but much more work is needed 
to make genetically modified PD resistant grapes a reality. Efforts to 
locate and utilize PD resistance genes in grape species may be a more 
effective strategy for genetic engineering. These efforts may also help 
overcome public suspicion and opposition to genetic engineering in 
grape since the classical breeding with these genes is also possible 
and genetic engineering would represent a more targeted means of 
breeding PD resistance into a susceptible cultivar. However, these 
genes need to be isolated first and proven to be effective.

Breeders have been developing PD resistant hybrids for many 
years based on resistance from a number of Vitis and Muscadinia 
species. Resistant cultivars have been developed in public (Dunstan 
1965, Loomis 1958, Mortensen 1977, 1983a, 1983b, Olmo 
1986, Overcash 1981, 1982, among others) and private (Barrett, 
Bloodworth and others) breeding programs across the United States. 
These cultivars have high PD resistance, but relatively low fruit and 
wine quality relative to V. vinifera varieties. In the southeastern 
United States, grapes must also resist downy and powdery mildew, 
black rot and anthracnose, which have as great an impact on 
viticulture as PD does. These diseases are not found in California, 
which allows breeders to incorporate a greater percentage of high 
quality, but extremely disease susceptible V. vinifera into their 
breeding efforts and enables the production of much higher quality 
PD resistant cultivars in a shorter time span. The Walker lab has 
characterized and employed a wide range of PD resistant selections 
from breeders in the southeastern U.S.; from forms of V. arizonica 
collected in northern Mexico by H.P. Olmo in the 1960s, and from 
several V. vinifera × M. rotundifolia hybrid winegrape types with 
limited fertility. These breeding efforts are producing selections 
with high fruit quality and excellent PD resistance. 

Breeding efforts to combat PD are dependent upon germplasm 
resources and the nature of their resistance. Resistance to PD would 

organic pesticides to control glassy-winged sharpshooter, but 
none of the treatments achieved the level of success found with 
imidacloprid. Blua et al. (2005) evaluated five-meter-high screen 
barriers to prevent the movement of the glassy-winged sharpshooter 
into vineyards. These screens seemed to deter or prevent the 
sharpshooters from entering ornamental plant nurseries but were 
judged to be too expensive for general vineyard use. 

The culmination of efforts to develop effective parasitoids 
of glassy-winged sharpshooters led to the release of mymarid 
parasitoid wasps in southern California in a joint effort between the 
University of California and the California Department of Food and 
Agriculture. These species included Gonatocerus ashmeadi (native to 
SEUS and northeastern MX), G. triguttatus (MX and southeast 
Texas), G. morrilli (southern CA) and G. fasciatus (southeast and 
midwest United States). These wasps have established in southern 
California and are actively parasitizing glassy-winged sharpshooter 
eggs, but concern remains that effectiveness of parasitoids will not 
be great enough to prevent further movement of the glassy-winged 
sharpshooter (Pilkington et al. 2006).

Control – limiting X. fastidiosa
There have also been efforts to limit PD by reducing or eliminating 
X. fastidiosa with antibiotics including tetracyclines and 
aminoglycosides (Kuzina et al. 2006). However, introducing these 
compounds into xylem vessels on a commercial scale is impractical 
and maintaining effective xylem titers would require repeated 
inoculations. Hopkins (2005) discovered a strain of X. fastidiosa 
(EB92-1) from elderberry that seems to induce systemic acquired 
resistance in Cabernet Sauvignon over eight years of field testing 
and natural infection in Florida. Trials with this strain will soon be 
established in California vineyards to test its efficacy and commercial 
potential.

Control – breeding for PD resistance
If the glassy-winged sharpshooter does spread more widely in 
California due to climatic change, disregard or collapse of quarantine 
restrictions, failure of predatory species, or the development of 
resistance to imidacloprid and neonicotinoid insecticides, the 
utilization of PD resistant cultivars would allow vineyards to be 
productive in the expanded ‘hot-spot’ areas. Resistant cultivars 
would also be greatly beneficial to growers in other regions were PD 
limits viticulture. 

When European settlers first invaded North America in the 
1500s they noticed the abundance of native grape species and 
concluded that vineyards would thrive in both the northern and 
southern parts of the ‘New World’. Efforts to establish V. vinifera 
failed due to a combination of fungal diseases (powdery and downy 
mildew, and black rot) and grape phylloxera that now plague 
viticulture around the world. These establishment efforts also failed 
because of cold winter temperatures in the northeast and PD in the 
southeast. These biotic and abiotic problems led to grape breeding 
efforts that produced hundreds of hybrids of V. vinifera and native 
American species adapted to the diseases and climatic conditions 
of the United States. These breeding efforts have continued to the 
present with the goal of combining the wine and fruit quality of 
V. vinifera with the resistances and tolerances of the American grape 
species. 

Grape species native to the southeastern United States have 
always been considered the most resistant to PD. These species thrive 
in areas of high PD pressure where V. vinifera plantings fail. Long-
term field trial data from Mississippi highlighted the PD resistance 
of some grape species (Loomis 1958). Species from the southeastern 
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be expected to be strongest and most common in its native range, 
and the species of the southeastern United States have been most 
commonly used in PD resistance programs (Hopkins et al. 1974a, 
Mortensen et al. 1977). These species include accessions of M. 
rotundifolia, V. aestivalis, V. champinii, V. candicans, V. cordifolia, V. 
shuttleworthii, V. simpsonii and V. smalliana (Hopkins et al. 1974, 
Mortensen et al. 1977, Krivanek and Walker 2005, Ruel and Walker 
2006). The resistance of M. rotundifolia cultivars and accessions 
varies based on their geographic origin (Hopkins et al. 1974, Ruel 
and Walker 2006) and resistance was correlated with mean annual 
minimum temperature with selections from colder sites having less 
resistance. However, all M. rotundifolia selections were much more 
resistant than the tested V. vinifera cultivars (Ruel and Walker 2006). 
Such studies have not been carried out with other species that range 
across PD’s acknowledged latitudinal boundary. 

Although strong resistance to PD exists in American species, 
crosses to V. vinifera produce few resistant offspring due to 
the quantitative inheritance and the complicated genetics of 
resistance to PD (Walker and Tenscher 2005). Mortensen (1968) 
hypothesized that resistance in progeny of V. simpsonii, V. smalliana, 
and V. shuttleworthii is controlled by dominant resistance alleles at 
three different loci in these backgrounds. Progeny with a dominant 
allele at each locus would be resistant, thus few resistant progeny are 
produced in these crosses where the loci segregate independently. 
Breeding for PD resistance with a resistance source possessing a 
single dominant resistant gene would greatly accelerate breeding 
efforts and allow the backcrossing to elite V. vinifera cultivars with 
the expectation of 50% resistant progeny in each generation. In 
1960, H.P. Olmo collected Vitis species across northern and central 
Mexico (Riaz et al. 2007). Many of these accessions were forms of 
V. arizonica that had been introgressed with several other southern 
and southwestern species, and many were later found to be highly 
resistant to PD (Krivanek et al. 2005a, 2005b, Riaz et al. 2007). 
Several of these accessions have been used to map resistance to 
PD and to produce PD resistant wine grapes in the Walker lab at 
the University of California, Davis, and table and raisin grapes in 
a collaborative breeding program between David Ramming at the 
United States Department of Food and Agriculture – Agricultural 
Research Service in Parlier, California.

Breeding efficiency can be greatly improved with the use of DNA 
markers closely associated with traits of interested. This process 
depends on well-characterized seedling populations with precise 
phenotypic data and the availability of accurate and reproducible 
genetic markers. Microsatellite or simple sequence repeat (SSR) 
markers are ideal for genetic mapping efforts because they are 
polymorphic, have a high level of heterozygosity, and are reliable 
and reproducible. They have been used to create genetic maps of 
V. vinifera (Adam-Blondon et al. 2004, Riaz et al. 2004) and for the 
mapping and study of PD resistance in populations derived from 
V. arizonica (Riaz et al. 2006). 

Genetic mapping efforts in the Walker lab began with the 
evaluation of the 9621 population, a cross of two half-sibling 
V. rupestris × V. arizonica type hybrids, D8909-15 and F8909-17 
(Riaz et al. 2007). D8909-15 is the offspring of V. rupestris A. de 
Serres × b42-26 V. arizonica/girdiana. This mapping population 
segregates for resistance to PD and the dagger nematode, Xiphinema 
index, and both traits are inherited as single dominant genes. The 
first genetic map was created by Doucleff et al. (2004) and was based 
primarily on AFLP (amplified fragment length polymorphism) 
markers. This map was followed by a map based on SSR markers, 
which located the PD resistance locus on chromosome 14 and 
named it PdR1 (Krivanek et al. 2006). These mapping efforts were 

further refined by Riaz et al. (2006) who located PdR1 between the 
SSR markers VMCNg3h8 and VVIN64, which are 4.34cM and 
2.78 cM from the resistance locus. 

Fine scale mapping efforts found that the PdR1 resistance allele 
in F8909-17 (PdR1a), the male parent of the 9621 population, 
represents only one of two alleles from the homozygous resistant 
V. arizonica/candicans b43-17 grandparent. The other PdR1 
allele (PdR1b) is present in F8909-08, a full-sibling of F8909-
17 generated from the original V. rupestris A. de Serres × b43-17 
V. arizonica/candicans cross (Riaz et al. 2008). Efforts are now 
underway to physically position the alleles of PdR1 on bacterial 
artificial chromosome libraries that have been developed from b43-
17, and to determine whether PdR1a and PdR1b confer equivalent 
PD resistance to progeny.

Wine grape breeding efforts in the Walker lab have a number 
of objectives that are being pursued at the same time. The first 
objective is to utilize the unique source of PD resistance found in the 
V. arizonica selection b43-17 and fully understand the mode of its 
inheritance as the single dominant resistance gene, PdR1 (Krivanek 
et al. 2005a, 2005b, Krivanek et al. 2006, Riaz et al. 2006, 2007, 
2008). A number of other resistance sources from the southeastern 
United States are also being used. Screening and evaluation of these 
resistance sources confirms past studies (Mortensen et al. 1968), and 
indicates that multiple genes control resistance in these resistance 
sources and that inheritance is complex and quantitative. It might 
be possible to locate these quantitative trait loci (QTLs) on genetic 
maps and finally use markers that are tightly linked to the QTLs 
in marker-assisted selection (MAS) to introduce multiple levels 
of PD resistance, broadening the base of resistance to prevent 
its breakdown. Such efforts are underway with David Ramming 
identify these QTLs and introgress these resistance sources into 
high quality seedless table grapes. 

SSR-based markers linked to PdR1 are being actively used in the 
Walker breeding program to introgress PD resistance from b43-17 
into high quality wine grapes. Many thousands of seedlings have 
been screened for PdR1 using MAS over the last three years and the 
results used to greatly accelerate the breeding process. The Walker lab 
has been able to germinate seed in the late Fall and plant early in the 
following Spring. Aggressive training practices then result in about a 
2-meter shoot that is attached to a 1.25 m fruiting wire as a short cane 
in the dormant season. More than 50% of these shoots flower the 
next Spring and the MAS results are used to identify parents for the 
next generation of crosses. The goal of this effort is to achieve seedling 
populations with 94 to 97% high quality V. vinifera parentage and PD 
resistance from PdR1 (Walker and Tenscher 2007). The following 
cultivars have been used: Alicante Bouschet, Aligote, Barbera, 
Cabernet Franc, Cabernet Sauvignon, Carignane, Chardonnay, 
Durif, Grenache, Listan, Merlot, Monbadon, Pinot Noir, Sauvignon 
blanc, Semillon, Symphony, Teinturier du Cher, Tempranillo, and 
Zinfandel. In the next phase, resistance from powdery mildew from 
a number of backgrounds including M. rotundifolia, French hybrids, 
Chinese species and American species will be incorporated into PD 
resistant selections, with MAS.

The Walker lab also made wines at the 87.5% V. vinifera level 
with fruit from three vine replicates of two-year-old vines in 2007 
to demonstrate that V. vinifera quality was being obtained at this 
relatively early stage of back-crossing. This ‘micro’-vinification 
was compared to wines made at the same scale from Cabernet 
Sauvignon, Pinot noir and two standard PD resistant cultivars from 
the southeastern United States – Lenoir and Midsouth, all harvested 
from the UC Davis vineyards. The results of enological analysis and a 
tasting panel indicate good progress is being made (Tables 1 and 2). 
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